0=-16t^2-2t+203

Simple and best practice solution for 0=-16t^2-2t+203 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2-2t+203 equation:



0=-16t^2-2t+203
We move all terms to the left:
0-(-16t^2-2t+203)=0
We add all the numbers together, and all the variables
-(-16t^2-2t+203)=0
We get rid of parentheses
16t^2+2t-203=0
a = 16; b = 2; c = -203;
Δ = b2-4ac
Δ = 22-4·16·(-203)
Δ = 12996
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{12996}=114$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-114}{2*16}=\frac{-116}{32} =-3+5/8 $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+114}{2*16}=\frac{112}{32} =3+1/2 $

See similar equations:

| 4^9x=280 | | 14+6=2x | | 5a-2÷3=-9 | | 5a-2/3=9 | | (180-(8x-192)-(x+37))+(7x-91)=180 | | 220/y=440/360 | | 5a-2÷3=9 | | 1/3(5x-6)=9 | | 4x-16-4x-22=2x^2+3x-6 | | 4x-24+3x-12=180 | | 440/360=220/y | | 2/n-9+1/n+3=7/n(n)-6n-27 | | 440/360=220/x | | 10x+50-4x+8=6 | | 4z2+11z=3 | | 2/n-9+1/n+3=7/n^2-6n-27 | | 5x/16+2=x/4+3 | | 10n-9/4=2n+15/4 | | 2(t-7)+2(8t-8)=17(t-2)+10 | | 26=-2c | | 1/6(x-4/3)+5/3=32/18 | | -28=-7m | | (X-2)(x-5)=(x+5)(x+9) | | 8(k-6)-(2k-4)=5k | | -26=-7m | | 4z+7-2z=5+z+7 | | 9a-6=18+3a | | 19.5x19.5=380.25 | | 10-5r=-25 | | 3(x+5)^2=24 | | -6x-6=120 | | n+3/n-1=5n/2 |

Equations solver categories